24 research outputs found

    The effect of dha omega-3 feeding in the high yielding holstein herd

    Get PDF
    The aim of this study was to analyse the effect of supplementary feeding of DHA (Docosahexaenoic Acid) rich algae product (Algae STM Alltech Inc.) on production of milk, fat and protein as well as on reproduction of high yielding Holstein dairy herd. Field trial was set up on Top 10 dairy farm in western part of Slovakia, under commercial conditions. The data of high yielding dairy cows, separated in two groups of 30 (control) and 29 (trial) animals, were recorded for period of 3 subsequent months from October to December 2015. Animals were fed once a day Total Mixed Ration based diet with different feed mixture composition in trial group (+100 g Algae STM Alltech Inc. per cow and day). Performance data were collected in accordance with official milk recording system of Breeding Services of Slovak Republic s. e. and milk samples were collected once per month according to the A4 standard methodology. The control group showed higher level of milk production compared to trial. Our study indicated that the feeding of algae caused milk fat depression and generally lower protein content in milk. Significant impact of algae feeding was found also for the level of urea in milk. In addition, the supplementary feeding of DHA may represent effective strategy to increase the percentage of pregnancies per inseminations in lactating dairy cows

    The quality of farm-scale alfalfa silages

    Get PDF
    Received: 2015-11-03   |   Accepted: 2016-01-29   |   Available online: 2016-05-30dx.doi.org/10.15414/afz.2016.19.02.54-58The aim of the work was to determine the nutritive and fermentation quality of farm-scale alfalfa silages from West part of Slovakia, analyzed in 2014 on the Department of Animal Nutrition, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra. In alfalfa silages, we found the average dry mater content 372.66 g.kg-1, while 30 % of samples had lower dry mater content than 350 g.kg-1. Only 15 % of samples had higher content of crude protein than 200 g. We don't found content of ADF lower than 300 g.kg-1 of DM in any sample. In alfalfa silages was higher content of NDF than 37.5 % in 70 % of alfalfa silages. The lactic acid content was higher than 10 g of the original mater in all samples except one, ranged from 0.73 to 14.67 % on a dry matter basis. Average content of acetic acid was 29.82 g.kg-1 of DM. Undesirable butyric acid was found in 35 % of samples with average content 8.44 g.kg-1 of DM, with maximal content 108.25 g.kg-1 of DM.Keywords: alfalfa, silage, nutritive value, fermentation, qualityReferencesBaumont, R. (1996) Palatability and feeding behaviour in ruminants. A review. Annales de Zootechnie, vol. 45, no. 5, pp. 385-400. doi:http://dx.doi.org/10.1051/animres:19960501Bíro, D. et al. (2010) Influence of bacterial-enzyme additive on fermentation process of faba bean, alfalfa and oat mixture silages. In Forage Conservation. Brno 17-19.3. 2010. Brno: Mendel University, pp. 145-147.Bíro, D. et al. (2014) Conservation and Adjustment of Feed. Nitra: Slovak University of Agriculture (in Slovak).Daniel, J. L. P. et al. (2013) Performance of dairy cows fed high levels of acetic acid or ethanol. Journal of Dairy Science, vol. 96, no. 1, pp. 398-406.  doi:http://dx.doi.org/10.3168/jds.2012-5451Doležal, P. et al. (2012) Feed Conservation. Olomouc: Petr Baštan (in Czech).Gerlach, K. et al. (2014) Aerobic exposure of grass silages and its impact on dry matter intake and preference by goats. Small Ruminant Research, vol. 117, no. 2-3, pp. 131-141. doi: http://dx.doi.org/10.1016/j.smallrumres.2013.12.033Huhtanen,  P. et al. (2002) Prediction of the relative intake potential of grass silage by dairy cows. Livestock Production Science, vol. 73, no. 2-3, pp. 111-130. doi: http://dx.doi.org/10.1016/S0301-6226(01)00279-2Charmley, E. (2001) Towards improved silage quality. A review. Canadian Journal of Animal Science, vol. 81, no. 2, pp. 157-168. doi:http://dx.doi.org/10.4141/CJAS10071Jendrišáková, S. (2010) Determination of protein digestible in intestine by NIRS-method in forages for ruminants. Acta fytotechnica et zootechnica, vol. 13, no. 2, pp. 54-57. Retrieved from http://www.slpk.sk/acta/docs/2010/afz02-10/jendrisakova.pdfKung, L. and Shaver, R. (2001) Interpretation and use of silage fermentation analysis reports. Focus on Forage, vol. 3, no. 13, pp.1-5.Kung, L. (2010) Understanding the biology of silage preservation to maximize quality and protect the environment. In Proceedings, 2010 California Alfalfa & Forage Symposium and Corn/Cereal Silage Conference. Visalia, California 1-2. 12. 2010. University of California, pp. 1-14.Mitrík, T. (2010) Evaluation of quality and nutritive value of forage : Ph.D. Thesis. Košice: University of Veterinary Medicine and Pharmacy,. pp.126-130.Muck R. E., Moser, L. E. and Pitt, R. E. (2003) Postharvest factors affecting ensiling. In: Buxton, D. et al. (eds) Silage Science and Technology. No. 42 in the series Agronomy. Madison: Wisconsin, pp. 251-304.Pajtáš, M. et al. (2009) Nutrition and animal feeding. Nitra: Slovak University of Agriculture in Nitra (in Slovak).Petrikovič, P. et al. (2000) Nutritive value of feed I. part. Nitra: Research institute of animal production (in Slovak).Rajčáková, Ľ. and Mlynár, R. (2009) The principles of use of the potential of silage and preservative additives in the production of high quality and hygienically safe conserved feed. [Online]. Retrieved May 29, 2015 from http://www.cvzv.sk/pdf/Konzervacia-a-silazovanie-krmiv/Silazovanie-metodicka%20prirucka.pdf (in Slovak).Regulation of the Government of Slovak Republic no. 439/2006, appendix no.7, part G, Nutritive value of feeds (in Slovak).Regulation of the Slovak Ministry of Agriculture no. 2136/2004-100 about sampling of feeds and about laboratory testing and evaluation of feeds. (in Slovak).SAS Institute Inc. (2008) SAS/STAT® 9.2 User's Guide. Cary, NC: SAS Institute Inc.Seglar, B. (2003) Fermentation analysis and silage quality testing. In Proceedings of the Minnesota Dairy Health Conference College of Veterinary Medicine. University of Minnesota, pp.119-136. [Online].  Retrieved May 29, 2015 from http://www.cvm.umn.edu/dairy/prod/groups/cvm/@pub/@cvm/documents/asset/cvm_22260.pdfShaver, R. D. (2013) Practical application of new forage quality tests. [Online].  Retrieved May 29, 2015 from http://ext100.wsu.edu/wallawalla/wp-content/uploads/sites/45/2013/07/New-Forage-Quality-Tests.pdfSchmidt, P. et al. (2014) Effects of Lactobacillus buchneri on the nutritive value of sugarcane silage for finishing beef bulls. Revista Brasileira de Zootecnia, vol. 43, no.1, pp. 8-13. doi:http://dx.doi.org/10.1590/S1516-35982014000100002 Steinshamn, H. (2010) Effect of forage legumes on feed intake, milk production and milk quality – a review. Animal Science Papers and Reports, vol. 28, no. 3, pp. 195-206. Retrieved from http://www.ighz.edu.pl/?p0=5&p1=34&o=2998Škultéty, M. (1999) Evaluation of quality in silages. In Forage conservation. Nitra 6.-8. 9. 1999. Nitra: Research Institute of Animal Production, pp. 46-49 (in Slovak).Tabacco, E. et al. (2002) Effect of cutting frequency on dry matter yield and quality of lucerne (Medicago sativa L.) in the Po Valley. Italian Journal of Agronomy, vol. 6, no.1, pp. 27-33. Retrieved from https://www.researchgate.net/publication/228598490_Effect_of_cutting_frequency_on_dry_matter_yield_and_quality_of_lucerne_Medicago_sativa_L_in_the_Po_ValleyTabacco, E. et al. (2006) Effect of chestnut tannin on fermentation quality, proteolysis, and protein rumen degradability of alfalfa silage. Journal of  Dairy Science, vol. 89, no. 12, pp. 4736-4746. doi:http://dx.doi.org/10.3168/jds.S0022-0302(06)72523-1Van Saun, R. J. (2008) Troubleshooting silage problems: how to identify potential problems. [Online].  Retrieved May 29, 2015 from http://extension.psu.edu/animals/health/metabolic-profiling/bibliography/Bunksilo.pdfVyskočil, I. et al. (2008) Pocket catalog of feedstuffs. [Online].  Retrieved May 29, 2015 from http://web2.mendelu.cz/pcentrum/publikace/53_kapesni_katalog_krmiv.pdf (in Czech).Ward, R.T. (2008) Fermentation analysis of silage: use and interpretation. [Online].  Retrieved May 29, 2015 from http://www.foragelab.com/media/fermentation-silage-nfmp-oct-2008.pd

    Effect of dietary grape pomace on fats digestibility in horses

    Get PDF
    Submitted 2020-07-02 | Accepted 2020-08-24 | Available 2020-12-01https://doi.org/10.15414/afz.2020.23.mi-fpap.132-136The present study aimed to analyse dried grape pomace as a possible source of crude fat and polyunsaturated fatty acids in equine nutrition, as well as its effect on apparent digestibility of crude fat and selected fatty acids. Twelve clinically healthy sport horses were used in the feeding trial (Slovak warm blood breed). Animals were divided into three groups; control group (without supplementation) and two experimental groups where diets were enriched by 200 g and 400 g of dried grape pomace, respectively. Digestibility analysis was carried out by total faeces collection method. Crude fat of feeds and faeces, extracted by Soxhlet-Henkel method, was subsequently subjected to fatty acid profile analysis by gas chromatography. Grape pomace contained 96.17 g.kg-1 of crude fat with linoleic (70.03% in fat) and oleic (15.86% in fat) as the most abundant fatty acids. An indication (P>0.05) of higher digestibility of crude fat and oleic acid in both experimental groups, in comparison with control group, was detected. The digestibility of palmitic, linoleic, α-linolenic and cis-11-eicosenoic acids was not affected by dried grape pomace consumption (P>0.05). Based on the results of this experiment, dried grape pomace had no significant effect neither on digestibility of crude fat nor on the selected fatty acids. However, this winery by-product could be used as an alternative source of crude fat in equine diets.Keywords: crude fat, equine, polyunsaturated fatty acid utilisation, wine by-productsReferencesAslanian, A., Dizaji, A. A., Farhoomand, P., Shahryar, H. A., Sis, N. M., & Rouhnavaz, S. (2011). Characterization of the nutritive value and protein fractions the cornell net carbohydrate and protein system in White and Red Grape (Vitis vinifera sp.) Pomace. Research Journal of Biological Sciences, 6(7), 298-303.Azevêdo, J. A. G., Valadares Filho, S. C., Pina, D. S., Detmann, E., Pereira, L. G. R., Valadares, R. F. D., ... & Benedeti, P. B. (2012). Nutritional diversity of agricultural and agro-industrial by-products for ruminant feeding. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 64(5), 1246-1255. https://doi.org/10.1590/S0102-09352012000500024Brenes, A., Viveros, A., Chamorro, S., & Arija, I. (2016). Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Animal Feed Science and Technology, 211, 1-17. https://doi.org/10.1016/j.anifeedsci.2015.09.016Burke, J. B. Equine International. (2009). Feeding Equine Athletes. Equine International, 1(2), 28-30.Davies, J. A., Krebs, G. L., Barnes, A., Pant, I., & McGrath, P. J. (2009). Feeding grape seed extract to horses: effects on health, intake and digestion. Animal, 3(3), 380-384.European Union. (2009). Commission regulation (EC) No 152/2009 of 27 Jan. 2009: Laying down the methods of sampling and analysis for the official control of feed.Foiklang, S., Wanapat, M., & Norrapoke, T. (2016). Effect of grape pomace powder, mangosteen peel powder and monensin on nutrient digestibility, rumen fermentation, nitrogen balance and microbial protein synthesis in dairy steers. Asian-Australasian Journal of Animal Sciences, 29(10), 1416-1423. https://doi.org/10.5713/ajas.15.0689Gálik, B., Kolláthová, R., Rolinec, M., Juráček, M., Šimko, M., Hanušovský, O., Bíro, D., Vašeková, P., Kolesárová, A., Barantal, S. (2019). Grape by-products as bioactive substances in animal nutrition: A review. Agriculture and Food, 7, 67-172.Georgiev, V., Ananga, A., & Tsolova, V. (2014). Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 6(1), 391-415. https://doi.org/10.3390/nu6010391Gülcü, M., Uslu, N., Özcan, M. M., Gökmen, F., Özcan, M. M., Banjanin, T., … Lemiasheuski, V. (2019). The investigation of bioactive compounds of wine, grape juice and boiled grape juice wastes. Journal of Food Processing and Preservation, 43(1), e13850. https://doi.org/10.1111/jfpp.13850Hanganu, A., Todaşcă, M. C., Chira, N. A., Maganu, M., & Roşca, S. (2012). The compositional characterisation of Romanian grape seed oils using spectroscopic methods. Food Chemistry, 134(4), 2453-2458. https://doi.org/10.1016/j.foodchem.2012.04.048Hess, T., & Ross-Jones, T. (2014). Omega-3 fatty acid supplementation in horses. Revista Brasileira de Zootecnia, 43(12), 677-683. https://doi.org/10.1590/S1516-35982014001200008Hinchcliff, K. W., Kaneps, A. J., & Geor, R. J. (2013). Equine Sports Medicine and Surgery E-Book. Elsevier Health Sciences.Hussein, S., & Abdrabba, S. (2015). Physico-chemical characteristics, fatty acid, composition of grape seed oil and phenolic compounds of whole seeds, seeds and leaves of red grape in Libya. International Journal of Applied Science and Mathematics, 2(5), 2394-2894.Kentucky Equine Research. (2016). Nutrition of the performance horse.Kolláthová, R., Gálik, B., Halo, M., Kováčik, A., Hanušovský, O., Bíro, D., ... & Šimko, M. (2020). The effects of dried grape pomace supplementation on biochemical blood serum indicators and digestibility of nutrients in horses. Czech Journal of Animal Science, 65(2), 58-65. https://doi.org/10.17221/181/2019-CJASLichovnikova, M., Kalhotka, L., Adam, V., Klejdus, B., & Anderle, V. (2015). The effects of red grape pomace inclusion in grower diet on amino acid digestibility, intestinal microflora, and sera and liver antioxidant activity in broilers. Turkish Journal of Veterinary and Animal Sciences, 39(4), 406-412. https://doi.org/10.3906/vet-1403-64Mironeasa, S., Codină, G. G., & Mironeasa, C. (2016). The effects of wheat flour substitution with grape seed flour on the rheological parameters of the dough assessed by mixolab. Journal of Texture Studies, 43(1), 40–48. https://doi.org/10.1111/j.1745-4603.2011.00315.xNational Research Council. (2007). National Research Council Committee nutrient requirements of horses.Piccione, G., Arfuso, F., Fazio, F., Bazzano, M., & Giannetto, C. (2014a). Serum lipid modification related to exercise and polyunsaturated fatty acid supplementation in jumpers and thoroughbred horses. Journal of Equine Veterinary Science, 34(10), 1181-1187. https://doi.org/10.1016/j.jevs.2014.07.005Piccione, G., Marafioti, S., Giannetto, C., Panzera, M., & Fazio, F. (2014b). Effect of dietary supplementation with omega 3 on clotting time, fibrinogen concentration and platelet aggregation in the athletic horse. Livestock Science, 161, 109-113. https://doi.org/10.1016/j.livsci.2013.12.032Ribeiro, L. F., Ribani, R. H., Francisco, T. M. G., Soares, A. A., Pontarolo, R., & Haminiuk, C. W. I. (2015). Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. Journal of Chromatography B, 1007, 72–80. https://doi.org/10.1016/j.jchromb.2015.11.005Ross-Jones, T., Hess, T., Rexford, J., Ahrens, N., Engle, T., & Hansen, D. K. (2014). Effects of omega-3 long chain polyunsaturated fatty acid supplementation on equine synovial fluid fatty acid composition and prostaglandin E2. Journal of Equine Veterinary Science, 34(6), 779-783. https://doi.org/10.1016/j.jevs.2014.01.014Vineyard, K. R., Warren, L. K., & Kivipelto, J. (2010). Effect of dietary omega-3 fatty acid source on plasma and red blood cell membrane composition and immune function in yearling horses. Journal of Animal Science, 88(1), 248-257. https://doi.org/10.2527/jas.2009-2253Viveros, A., Chamorro, S., Pizarro, M., Arija, I., Centeno, C., & Brenes, A. (2011). Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poultry Science, 90(3), 566-578. https://doi.org/10.3382/ps.2010-00889 

    Prevalence of gastrointestinal parasites of red deer from Protected Landscape Area Štiavnické vrchy

    Get PDF
    Count of red deer in some areas of Slovak republic exceeds standard count. To these areas belongs as well Protected Landscape Area Štiavnické vrchy (N48°24'42'' E18°52'21''). High count of is a risk for spread of viral, bacterial as well as parasitic diseases. The aim of this study was to determined and evaluated prevalence of gastrointestinal parasites of red deer (Cervus elaphus) from Protected Landscape Area Štiavnické vrchy in year 2016. Monitoring was realized through cooperation between Department of Veterinary Sciences at Slovak University of Agriculture in Nitra and District Veterinary and Food Administration in Zvolen as well as with Hunting Associations acting in area of Štiavnické vrchy. Total 120 faecal samples (10 from each month of the year 2016) was analysed using flotation method and eggs and oocysts were identified. Highest prevalence was detected by Trichostrongylus axei, Eimeria spp. and Spiculopteragia boehmi. Prevalence of endoparasites is affected by age structure of red deer and then by using antiparasitics, climatic condition. Result of these was, that prevalence of total gastrointestinal parasites was lowest during months January to March, when Hunting Associations realised regular worming. The highest prevalence of total gastrointestinal parasites was in months July to December, when the relative humidity is higher and to red deer population belongs as well new offspring, which has high predisposition to gastrointestinal parasites

    Probiotická a prebiotická krmná aditiva ve výživě telat

    Get PDF
    The target of the research was to analyze the effect of antidiarrheal feed additives on calves average daily weight gain. In the study, 120 calves were analyzed. Newborns were selected into 3 treatment groups, control (without supplementation) and group with Ascophyllum nodosum (prebiotics), and mixture of Lactobacillus sporogenes, Enterococcus faecalis and Bifidobacterium bifidum (probiotics). Individual body weight of animal were determined after 2 hours postpartum. Monitoring of the growth intensity, as well as health status were done till 56 days of age. Significant effects (P<0.01) of additive supplementation were found in the group with probiotics, in body weight at the age 21 days, as well as at the age of 56 days of life. Significant effect (P<0.01) of probiotics supplementation was found also in daily weight gains of animals. On the base of analyzed results, probiotics in calves nutrition stimulate the body weight.Cílem této studie bylo prokázání vlivu krmných aditiv s protiprůjmovým účinkem na hmotnostní přírůstky a zdraví telat. Do experimentu bylo zařazeno celkem 120 telat. Po narození byla telata rozdělena do tří skupin: Ascophyllum nodosum (hydrolyzát hnědých mořských řas, prebiotikum), kombinaci Lactobacillus sporogenes, Enterococcus faecalis a Bifidobacterium bifidum (probiotikum) a kontrolní skupinu. Všechna telata byla zvážena do dvou hodin po narození. Přírůstky a zdravotní stav byly sledovány od narození do 56. dne věku. Ve srovnání s kontrolní skupinou byl nalezen signifikantní vliv aplikovaných krmných aditiv u probiotické skupiny u hmotnostních přírůstků 21. den po otelení (P<0,01), u hmotnostních přírůstků 56. den po otelení (P<0,01) a průměrných denních přírůstků (P<0,01). Z této studie výplýva, že užívání probiotik, má významný pozitivní vliv na zvýšení přírůstků u telat

    Hematologický profil novonarodených prasiatok a prasníc kŕmených kŕmnou dávkou s obsahom hroznových výliskov

    Get PDF
    The aim of this study was to evaluate the effect of feeding pregnant sows with diet supplemented with dried grape pomace on hematological parameters of sows and new-born piglets. Sixteen pregnant crossbred sows Large white x Landrace mated with a Duroc boar, were randomly divided to two groups, control (C) and dried grape pomace (DGP) group. During last seven days of pregnancy the sow’s diet in DGP group contained 1% of DGP powder. Sows blood samples were taken before intake of diet containing DGP and during first day post partum. Blood of new-born piglets was taken immediately after birth before colostrum intake. All blood samples were analyzed on hematological parameters. After 7 days of treatment with DGP, sows blood showed significant changes in parameters such as total white blood cell count, lymphocytes count, mean corpuscular volume and mean corpuscular hemoglobin, but within the reference interval for pigs. Feeding pregnant sows with DGP affected the hematological parameters of the new-born piglets in a negative way. Compared to the C group, the new-born piglets in the DGP group had significantly lower lymphocyte counts, red blood cells, hemoglobin, hematocrit, mean corpuscular volume, and mean corpuscular hemoglobin values. Parameters of white and red blood cells are crucial for new-born piglets from an immunological and anemia point of view. Therefore, the addition of DGP during the last week of pregnancy to the sows’ diet cannot be recommended.Cieľom experimentu bolo vyhodnotiť vplyv skrmovania sušených hroznových výliskov prasnými prasnicami na hematologické parametre prasníc a ich novonarodených prasiatok. Šestnásť vysoko gravidných kríženiek plemien Biela ušľachtilá x Landrace, spárené s kancom Duroca, bolo náhodne rozdelených do dvoch skupín – kontrolnej (C) a skupiny s konzumáciou sušených hroznových výliskov (DGP). Počas posledných siedmich dní gravidity kŕmna dávka prasníc v skupine DGP obsahovala 1% prášku DGP. Vzorky krvi boli prasniciam odobraté pred prvým príjmom kŕmnej dávky obohatenej o DGP a počas prvého dňa po pôrode. Krv novorodených prasiatok bola odoberaná bezprostredne po narodení pred príjmom mledziva. Všetky vzorky krvi boli analyzované na hematologické parametre. Po 7 dňoch skrmovania DGP krv prasníc vykazovala významné zmeny v parametroch ako je celkový počet bielych krviniek, celkový počet lymfocytov, priemerný korpuskulárny objem a priemerný korpuskulárny hemoglobín. Parametre sa pohybovali v rámci referenčných intervalov pre ošípané. Skrmovanie DGP gravidným prasniciam negatívne ovplyvnilo hematologické parametre novorodencov. V porovnaní s kontrolnou skupinou mali novonarodené prasiatka z pokusnej skupiny signifikantne nižší počet lymfocytov, červených krviniek, hemoglobínu, hematokritu, priemerný korpuskulárny objem a priemerné hodnoty korpuskulárneho hemoglobínu. Pre novonarodené prasiatka sú parametre bielych a červených krviniek kľúčové z imunologického hľadiska a anémie. Pridanie DGP počas posledného týždňa gravidity do kŕmnej dávky prasníc preto nemožno odporučiť

    Index esenciálnych aminokyselín v mledzive prasníc

    Get PDF
    The aim of this study was to determine the protein quality of sow’s colostrum. For this purpose, the essential amino acid index (EAAI) of sow’s colostrum was calculated. The study was carried out on 12 Large white sows, which were on the 2.9 farrowing on average. Colostrum samples were collected by milking per hand without application of oxytocin. First sample were milked at time of birth of first piglet, and then every hour till 12th hour. Essential amino acids were determined using Amino Acid Analyser AAA400 (Ingos, Prague). For calculation of EAAI, the egg protein (EAAIegg) and protein of sow’s milk (EAAIsow’s milk) were used as standard. The highest value of EAAI was calculated for both at 4th h, EAAIegg 97.1%, EAAIsow’s milk 120.2%. The lowest values of EAAI were calculated at 12th h EAAIegg 78.3% and EAAIsow’s milk 96.9%. During the first 12 hours, protein of sow’s colostrum had not reached the quality of egg protein. Except sample collected at 12th hour after birth of first piglet, all colostrum samples had better quality of protein in comparison to sow’s milk. No significant (P>0.05) differences of EAAI between colostrum samples collected at different times from the birth of the first piglet till 12th h were observed.Cieľom tejto práce bolo stanoviť kvalitu bielkovín v mledzive prasníc. Pre dosiahnutie vytýčených cieľov bol pre mledzivo prasníc vypočítaný index esenciálnych aminokyselín (EAAI). Štúdia bola realizovaná na 12 prasniciach plemena Biela ušľachtilá, ktoré boli v priemere na 2,9 vrhu. Vzorky mledziva boli odoberané ručným oddojením, bez aplikácie oxytocínu. Prvá vzorka bola odobraná v čase narodenia prvého prasiatka vo vrhu, následné vzorky boli odoberané každú hodinu až do dvanástej hodiny po narodení prvého prasiatka. Obsah esenciálnych aminokyselín bol stanovený na prístroji Amino Acid Analyser AAA400 (Ingos, Praha). Ako štandardná bielkovina pre výpočet EAAI bola použitá bielkovina vajca (EAAIegg) a bielkovina mlieka prasníc (EAAIsow’s milk). Najvyššie hodnoty EAAI boli stanovené pri oboch na 4 hodinu od narodenia prvého prasiatka, EAAIegg 97,1%, EAAIsow’s milk 120,2%. Najnižšie hodnoty EAAI boli stanovené na dvanástu hodinu od narodenia prvého prasiatka, EAAIegg 78,3% and EAAIsow’s milk 96,9%. Počas sledovaných prvých dvanástich hodín mledzivo prasníc nedosiahlo kvalitu bielkovín, ktorá je vo vaječnej bielkovine. Okrem vzorky mledziva odobranej na dvanástu hodinu po narodení prvého prasiatka, mali všetky vzorky mledziva lepšiu kvalitu bielkovín ako je kvalita bielkovín v mlieku prasníc. Rozdiely hodnôt EAAIegg a aj EAAIsow’s milk zistené medzi jednotlivými časmi odberu vzorky boli štatisticky nepreukazné (P>0.05)

    Bioactive compounds and fatty acid profile of grape pomace

    Get PDF
    Article Details: Received: 2020-07-23 | Accepted: 2020-08-04 | Available online: 2020-12-31https://doi.org/10.15414/afz.2020.23.04.230-235The aims of experiment were to determinate the values of bioactive compounds and fatty acid profile in white dried grape pomace Vitis vinifera “Pinot Gris”. Grape pomace originated from winery of the University farm Kolíňany, centre Oponice. The dry matter and crude fat content was determined after the preparation of samples. The dried grape pomace contained 94.2% of dry matter and 8.40% of crude fat. This research was conducted on antiradical activity (DPPH), total polyphenols, total phelinolic acids, total flavanoids and fatty acid profile. The results confirmed that the grape pomace is considerable source of bioactive compounds, with high antioxidant activity, value of total phenolic acids and total polyphenols. From fatty acids profile are grape pomace significant source of polyunsaturated fatty acids, mainly essential linoleic acid (68.62 g 100 g-1 of fatty acids). They are characterized by wide ratio of n6/n3 fatty acids.Keywords: grape by-product, fatty acid, bioactive compound, nutritionReferencesANTONIOLLI, A., FONTANA, A. R., PICCOLI, P. and BOTTINI, R. (2015). Characterization of polyphenols and evaluation of antioxidant capacity in grape pomace of the cv. Malbec. Food Chemistry, 178, 172–178.BAYDAR, N. G., ÖZKAN, G. and YAŞAR, S. (2007). Evaluation of the antiradical and antioxidant potential of grape extracts. Food control, 18(9), 1131–1136.BELURY, M. A., COLE, R. M., SNOKE, D. B., BANH, T. and ANGELOTTI, A. (2018). Linoleic acid, glycemic control and Type 2 diabetes. Prostaglandins, Leukotrienes and Essential Fatty Acids, 132, 30–33.BRAGA, G. C., MELO, P. S., BERGAMASCHI, K. B., TIVERON, A. P., MASSARIOLI, A. P. and ALENCAR, S. M. D. (2016). Extraction yield, antioxidant activity and phenolics from grape, mango and peanut agro-industrial by-products. Ciência Rural, 46(8), 1498–1504.CAPCAROVÁ, M., KALAFOVÁ, A., SÍLEŠOVÁ, A., SCHNEIDGENOVÁ, M. and PETRUŠKA, P. (2017). The effect of quercetin on some hematological parameters of rabbits. Slovak society for agricultural, forestry, food and veterinary sciences at the slovak academy of sciences. Nitra: SUA in Nitra (pp. 23–35). In Slovak.EINBOND, L. S., REYNERTSON, K. A., LUO, X. D., BASILE, M. J. and KENNELLY, E. J. (2004). Anthocyanin antioxidants from edible fruits. Food chemistry, 84(1), 23–28.FAO, F. Agriculture Organization of the United Nations, 2010. Fats and fatty acids in human nutrition. Report of an expert consultation. Rome. consultado el, 30, 91.FARMAKOPEA Polska, V. tom V. PET Farm., Warszawa, 1999.FARVID, M. S., DING, M., PAN, A., SUN, Q., CHIUVE, S. E., STEFFEN, L. M. and HU, F. B. (2014). Dietary linoleic acid and risk of coronary heart disease: a systematic review and metaanalysis of prospective cohort studies. Circulation, 130(18), 1568–1578.HABÁNOVÁ, M., HOLOVIČOVÁ, M., GAŽAROVÁ, M., KOPČEKOVÁ, J. and MRÁZOVÁ, J. (2019). Content of selected bioactive substances in bilberries from various geographical areas. Scientific works of the Department of Crop Production. Nitra: SUA in Nitra (pp. 50–57). In Slovak.CHAMORRO, S., VIVEROS, A., ALVAREZ, I., VEGA, E. and BRENES, A. (2012). Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment. Food Chemistry, 133(2), 308–314.CHEDEA, V. S., PELMUS, R. S., LAZAR, C., PISTOL, G. C., CALIN, L. G., TOMA, S. M. and TARANU, I. (2017). Effects of a diet containing dried grape pomace on blood metabolites and milk composition of dairy cows. Journal of the Science of Food and Agriculture, 97(8), 2516–2523.IORA, S. R., MACIEL, G. M., ZIELINSKI, A. A., DA SILVA, M. V., PONTES, P. V. D. A., HAMINIUK, C. W. and GRANATO, D. (2015). Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. International Journal of Food Science & Technology, 50(1), 62–69.ISHIDA, K., KISHI, Y., OISHI, K., HIROOKA, H. and KUMAGAI, H. (2015). Effects of feeding polyphenol‐rich winery wastes on digestibility, nitrogen utilization, ruminal fermentation, antioxidant status and oxidative stress in wethers. Animal Science Journal, 86(3), 260–269.IVANIŠOVÁ, E., KÁNTOR, A. and KAČÁNIOVÁ, M. (2019). Antioxidant Activity and Total Polyphenol Content of Different Varieties of Grape from the Small Carpathians Wine Region of Slovakia. Scientific Papers: Animal Science & Biotechnologies/ Lucrari Stiintifice: Zootehnie si Biotehnologii, 52(2).IVANKO, Š. (2012). Actual questions to solve deficiencies of omega-3 polyunsaturated fatty acids in animal and human nutrition. Lazar days of nutrition and veterinary ditetics X. Košice: UVMP in Košice (pp. 115–121). In Slovak.JURÁČEK, M., BÍRO, D., ŠIMKO, M., GÁLIK, B., ROLINEC, M., HANUŠOVSKÝ, O. and BARANTAL, S. (2019). Fermentation quality and dry matter losses of grape pomace silages with urea addition. Agriculture & Food, 7,173–178.JURÍKOVÁ, T., FATRCOVÁ-ŠRAMKOVÁ, K. and SCHWARZOVÁ, M. (2019). Lesser known fruit as a source of valuable bioactive substances. Agrobiodiversity for improve the nutrition, health and quality of human and bees life. Nitra: SUA in Nitra (p. 94).KOLLÁTHOVÁ, R., HANUŠOVSKÝ, O., GÁLIK, B., BÍRO, D., ŠIMKO, M., JURÁČEK, M. and GIERUS, M. (2020). Fatty acid profile analysis of grape by-products from Slovakia and Austria. Acta Fytotechnica et Zootechnica, 23(2).LAVEE, S. (2000). Grapevine (Vitis vinifera) growth and performance in warm climates. In Temperate Fruit Crops in Warm Climates (pp. 343–366). Springer, Dordrecht.LENIGHAN, Y. M., McNULTY, B. A. and ROCHE, H. M. (2019, May). Dietary fat composition: replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on α-linolenic acid. The Proceedings of the Nutrition Society, 78(2), 234–245). LI, K., BRENNAN, L.,BLOOMFIELD, J. F., DUFF, D. J., MCNULTY, B. A., FLYNN, A. and NUGENT, A. P. (2018). Adiposity associated plasma linoleic acid is related to demographic, metabolic health and haplotypes of FADS1/2 genes in Irish adults. Molecular nutrition & food research, 62(7), 1700785.LIBRÁN CUERVAS-MONS, C. M., MAYOR LÓPEZ, L., GARCÍA CASTELLÓ, E. M. and VIDAL BROTONS, D. J. (2013). Polyphenol extraction from grape wastes: Solvent and pH effect. Agricultural Sciences, 4(9B), 56–62.MANCA, M. L., MARONGIU, F., CASTANGIA, I., CATALÁNLATORRE, A., CADDEO, C., BACCHETTA, G. and MANCONI, M. (2016). Protective effect of grape extract phospholipid vesicles against oxidative stress skin damages. Industrial Crops and Products, 83, 561–567.MICHALCOVA, K., ROYCHOUDHURY, S., HALENAR, M., TVRDA, E., KOVACIKOVA, E., VASICEK, J. and KOLESAROVA, A. (2019). In vitro response of human ovarian cancer cells to dietary bioflavonoid isoquercitrin. Journal of Environmental Science and Health, Part B, 54(9), 752–757.OZDEMIR, G., KITIR, N., TURAN, M. and OZLU, E. (2018). Impacts of organic and organo-mineral fertilizers on total phenolic, flavonoid, anthocyanin and antiradical activity of okuzgozu (Vitis vinifera L.) grapes. Acta Scientiarum Polonorum Hortorum Cultus, 17(3), 91–100.PARRY, J. HAIWEN, L., JIA-REN, L., KEQUAN, Z., LEI, Z. and SHUXIN, R. (2011). Antioxidant activity, antiproliferation of colon cancer cells, and chemical composition of grape pomace. Food and Nutrition Sciences, 2011.PASTRANA-BONILLA, E., AKOH, C. C., SELLAPPAN, S. and KREWER, G. (2003). Phenolic content and antioxidant capacity of muscadine grapes. Journal of agricultural and food chemistry, 51(18), 5497–5503.PINTAĆ, D., MAJKIĆ, T., TOROVIĆ, L., ORČIĆ, D., BEARA, I., SIMIN, N. and LESJAK, M. (2018). Solvent selection for efficient extraction of bioactive compounds from grape pomace. Industrial Crops and Products, 111, 379–390.POUDEL, P. R., TAMURA, H., KATAOKA, I. and MOCHIOKA, R. (2008). Phenolic compounds and antioxidant activities of skins and seeds of five wild grapes and two hybrids native to Japan. Journal of Food Composition and Analysis, 21(8), 622–625.RIBEIRO, L. F., RIBANI, R. H., FRANCISCO, T. M. G., SOARES, A. A., PONTAROLO, R. and HAMINIUK, C. W. I. (2015). Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. Journal of chromatography B, 1007, 72–80.ROCKENBACH, I. I., RODRIGUES, E., GONZAGA, L. V., CALIARI, V., GENOVESE, M. I., GONÇALVES, A. E. D. S. S. and FETT, R. (2011). Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry, 127(1), 174–179.RODRÍGUEZ-MORGADO, B., CANDIRACCI, M., SANTAMARÍA, C., REVILLA, E., GORDILLO, B., PARRADO, J. and CASTAÑO, A. (2015). Obtaining from grape pomace an enzymatic extract with anti-inflammatory properties. Plant foods for human nutrition, 70(1), 42–49.RUBERTO, G., RENDA, A., DAQUINO, C., AMICO, V., SPATAFORA, C., TRINGALI, C. and De TOMMASI, N. (2007). Polyphenol constituents and antioxidant activity of grape pomace extracts from five Sicilian red grape cultivars. Food Chemistry, 100(1), 203–210.SÁNCHEZ‐MORENO, C., LARRAURI, J. A. and SAURA‐ CALIXTO, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270–276.SINGLETON, V. L. and ROSSI, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144–158.SOARES, S. E. (2002). Ácidos fenólicos como antioxidantes. Revista de nutrição, 15(1), 71–81. SPIGNO, G., TRAMELLI, L. and De FAVERI, D. M. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of food engineering, 81(1), 200–208.VATAI, T., ŠKERGET, M. and KNEZ, Ž. (2009). Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. Journal of Food Engineering, 90(2), 246–254.VAUZOUR, D., RODRIGUEZ-MATEOS, A., CORONA, G., ORUNA-CONCHA, M. J. and SPENCER, J. P. (2010). Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients, 2(11), 1106–1131.WILLETT, W. C. (2002). Balancing life-style and genomics research for disease prevention. Science, 296(5568), 695–698.WU, J. H., LEMAITRE, R. N., KING, I. B., SONG, X., PSATY, B. M., SISCOVICK, D. S. and MOZAFFARIAN, D. (2014). Circulating omega-6 polyunsaturated fatty acids and total and causespecific mortality: the Cardiovascular Health Study. Circulation, 130(15), 1245–1253.XU, C., YAGIZ, Y., BOREJSZA-WYSOCKI, W., LU, J., GU, L., RAMÍREZ-RODRIGUES, M. M. and MARSHALL, M. R. (2014). Enzyme release of phenolics from muscadine grape (Vitis rotundifolia Michx.) skins and seeds. Food chemistry, 157, 20–29.YI, C., SHI, J., KRAMER, J., XUE, S., JIANG, Y., ZHANG, M. and POHORLY, J. (2009). Fatty acid composition and phenolic antioxidants of winemaking pomace powder. Food Chemistry, 114(2), 570–576

    Fatty acid composition of maize silages from different hybrids

    Get PDF
    Received: 2016-12-13 | Accepted: 2016-12-18 | Available online: 2017-12-31http://dx.doi.org/10.15414/afz.2017.20.04.95-98The aim of this research was to determine the fatty acid content in maize silages of different hybrids.  Grain hybrid with FAO number 420 and silage hybrid with stay-green maturation with FAO number 450 were evaluated. Maize hybrids were grown under the same agro-ecological conditions, and harvested on growing degree days 1277 (FAO 420) and 1297 (FAO 450).  Whole-plant maize was chopped to 10 mm by harvester with kernel processor and immediately ensiled in plastic barrels (volume 50 dm3). Maize matter was ensiled without silage additives. For fatty acids analyses samples of maize silages were taken after 8 week of ensiling. Content of fatty acids was quantified by gas chromatography. Examined maize of both hybrids had the highest linoleic acid content, followed by oleic acid and third highest content of palmitic acid. The results confirmed differences in fatty acid content in maize silages of different hybrids. In silages of grain hybrid was detected significantly higher content of palmitic acid and cis-11-eicosenoic acid and significantly lower content of oleic acid in compared with silage of silage hybrid. This ultimately resulted in a higher polyunsaturated fatty acids content (P < 0.05) in maize silage from grain hybrid and lower monounsaturated fatty acids content (P < 0.05) in maize silage from stay green hybrid. Keywords: fatty acid, maize, hybrid, silageReferences Alezones, J. et al. (2010) Caracterización del perfil de ácidos grasos en granos de híbridosde maíz blanco cultivados en Venezuela. Archivos Latinoamericanos de Nutricion, vol. 60, no. 4, pp. 397–404.Alves, S.P. et al. (2011) Effect of ensiling and silage additives on fatty acid composition of ryegrass and corn experimental silages. Journal of Animal Science, vol. 89, no. 8, pp. 2537–2545. doi: https://dx.doi.org/10.2527/jas.2010-3128Arvidsson, K., Gustavsson, A.-M. and Martinsson, K. (2009) Effects of conservation method on fatty acid composition of silage. Animal Feed Science and Technology, vol. 148, no. 2–4, pp. 241–252. http://dx.doi.org/10.1016/j.anifeedsci.2008.04.003Balušíková, Ľ. et al. (2017) Fatty acids of maize silages of different hybrids. In NutriNet 2017. České Budějovice: University of South Bohemia in České Budějovice, pp. 13–19.Bíro, D. et al. (2014) Conservation and adjustment of feeds. Nitra: Slovak University of Agriculture. 223 p. (in Slovak).Blažková, K. et al. (2012) Comparison of in vivo and in vitro digestibility in horses. In Koně 2012. České Budějovice: University of South Bohemia in České Budějovice, pp. 1–7.Boufaïed, H. et al. (2003) Fatty acids in forages. I. Factors affecting concentrations. Canadian Journal of Animal Science, vol. 83, no. 3, pp. 501–511. doi:http://dx.doi.org/10.4141/a02-098Capraro, D. et al. (2017) Feeding finishing heavy pigs with corn silages: effects on backfat fatty acid composition and ham weight losses during seasoning. Italian Journal of Animal Science, vol.16, no. 4, pp. 588–592. doi:http://dx.doi.org/10.1080/1828051x.2017.1302825Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. L 54/1. 130 p.Eurostat 1 Green maize by area, production and humidity. [Online] Available from:  http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode=tag00101&plugin=1 [Accessed: 2017- 10-30].Galassi, G. et al. (2016) Digestibility, metabolic utilisation and effects on growth and slaughter traits of diets containing whole plant maize silage in heavy pigs. Italian Journal of Animal Science, vol. 16, no. 1, pp. 122–131. doi:http://dx.doi.org/10.1080/1828051x.2016.1269299Glasser, E. et al. (2013) Fat and fatty acid content and composition of forages: a meta-analysis. Animal Feed Science and Technology, vol.185, no. 1–2, pp. 19–34. doi:http://dx.doi.org/10.1016/j.anifeedsci.2013.06.010Guermah, H., Maertens, L. and Berchiche, M. (2016) Nutritive value of brewersʼ grain and maize silage for fattening rabbits. World Rabbit Science, vol. 24, no. 3, pp. 183–189. doi: http://dx.doi.org/10.4995/wrs.2016.4353Han, L. and Zhou, H. (2013) Effects of ensiling process and antioxidants on fatty acids concentrations and compositions in corn silages. Journal of Animal Science and Biotechnology, vol. 4, no. 1, pp. 1–7. doi: http://dx.doi.org/10.1186%2f2049-1891-4-48Kalač, P. and Samková, E. (2010) The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech Journal of Animal Science, vol. 55, no. 12, pp. 521–537.Khan, N.A.,  Cone, J.W. and Hendriks, W.H. (2009) Stability of fatty acids in grass and maize silages after exposure to air during the feed out period. Animal Feed Science and Technology, vol. 154, no. 3–4, pp. 183–192. doi:http://dx.doi.org/10.1016/j.anifeedsci.2009.09.005Khan, N.A. et al. (2011) Changes in fatty acid content and composition in silage maize during grain filling. Journal of Science of Food and Agriculture, vol. 91, no.6, pp. 1041–1049. doi:http://dx.doi.org/10.1002/jsfa.4279Khan, N.A. et al. (2012) Causes of variation in fatty acid content and composition in grass and maize silages. Animal Feed Science and Technology, vol. 174, no. 1–2, pp. 36–45. doi: http://dx.doi.org/10.1016/j.anifeedsci.2012.02.006KHAN, N.A. et al. (2015) Effect of species and harvest maturity on the fatty acids profile of tropical forages. The Journal of Animal & Plant Sciences, vol. 25, no. 3, pp. 739–746.Kokoszyński, D. et al. (2014) Effect of corn silage and quantitative feed restriction on growth performance, body measurements, and carcass tissue composition in White Kołuda W31 geese. Poultry Science,   vol. 93, no. 8, pp.1993–1999. doi:http://dx.doi.org/10.3382/ps.2013-03833Loučka, R. and Tyrolová, Y. (2013) Good practice for maize silaging. Praha: Institute of Animal Science.Mir, P.S. (2004) Fats in Corn Silage. Advanced Silage Corn Management 2004. [Online] Available from: http://www.farmwest.com/chapter-8-quality-of-corn-silage [Accessed: 2017- 10-30].Mojica-Rodríguez, J.E. et al. (2017) Effect of stage of maturity on fatty acid profile in tropical grasses. Corpoica Ciencia Tecnología Agropecuaria, vol. 18, no.2, pp. 217–232. doi: http://dx.doi.org/10.21930/rcta.vol18_num2_art:623Nazir, N.A. et al. (2011) Changes in fatty acid content and composition in silage maize during grain filling. Journal of the Science of Food and Agriculture, vol. 91, no. 6, pp.1041–1049. http://dx.doi.org/10.1002/jsfa.4279Oliveira, M.A. et al. (2012) Fatty acids profile of milk from cows fed different maize silage levels and extruded soybeans. Revista Brasileira de Saúde e Produção Animal, vol. 13, no. 1, pp. 192–203. doi:  http://dx.doi.org/10.1590/s1519-99402012000100017SAS Institute (2008) Statistical Analysis System Institute, Version 9.2. SAS Institute, Cary, NC, USA.Van Ranst, G. et al. (2009) Influence of herbage species, cultivar and cutting date on fatty acid composition of herbage and lipid metabolism during ensiling. Grass and Forage Science, vol. 64, no. 2, pp. 196–207. doi:http://dx.doi.org/10.1111/j.1365-2494.2009.00686.xZeman, L. et al. (2006) Nutrition and feeding of livestock. Praha: Profi Press. 360 p. (in Czech)

    Change of feeding affects fatty acids profile of goat’s milk

    Get PDF
    Aim of this study was to analyse the effect of beginning of grazing on fatty acids (FA) profile of goat’s milk. In all milk samples profile of basic FA was determined. Proportion of “goaty flavour” fatty acids: C6:0, C8:0 and C10:0 in milk fat was the lowest (P<0.01) when goats were fed only indoors and was the highest when goats were 7 days on pasture. Proportion of C18:2 cis 6 in milk fat varied between sampling times from 2.54 to 2.63 g·100 g-1 FA. C18:3 n - 3 was the highest 1.25 g·100 g-1 FA when goats were fed only indoors, after 7 days of grazing decreased to 0.93 g·100 g-1 FA (P<0.01). On the other hand, conjugated linoleic acid (CLA) in milk was lowest 0.55 g·100 g-1 FA when goats were fed only indoors. After 7 days of grazing CLA in milk increased to 0.91 g·100 g-1 FA (P<0.01). During next sampling days CLA decreased to 0.65 g·100 g-1 FA. Development of SFA, MUFA and PUFA of goat’s milk after start of grazing was in this experiment different than published most of authors. However, described changes of fatty acids profile of goat milk confirm significant effect of beginning of grazing on milk fat composition
    corecore